Overblog
Suivre ce blog Administration + Créer mon blog

Pourquoi ce blog ?

CouvPocheIndispensables
J'ai créé ce blog lors de la sortie de mon livre "Les Indispensables mathématiques et physiques pour tous", Odile Jacob, avril 2006 ; livre republié en poche en octobre 2011 (achat en ligne) (sommaire du livre).
Je développe dans ce blog des notions de mathématiques et de physique à destination du plus large public possible, en essayant de susciter questions et discussion: n'hésitez pas à laisser vos commentaires!

Rechercher

Indispensables astronomiques

Nouveauté octobre 2013, mon livre "Les Indispensables astronomiques et astrophysiques pour tous" est sorti en poche, 9,5€ (éditions Odile Jacob, éidtion originale 2009). Comme mon premier livre (Les Indispensables mathématiques et physiques), c'est un livre de notions de base illustrées avec des exemples concrets, s'appuyant sur les mathématiques (géométrie notamment) pour l'astronomie, et sur la physique pour l'astrophysique. Je recommande vivement sa lecture.

Communauté de blogs

7 février 2020 5 07 /02 /février /2020 16:09

Lecture et analyse des articles d’Idriss Aberkane sur la conjecture de Syracuse

 

 

Nous voulions analyser l’article de 2017 d’Idriss Aberkane sur la conjecture de Collatz-Syracuse[1]. L’un de nous, JJLP (Jojo Le Poisson)[2], par ailleurs mathématicien, « s’y est collé » : il a produit le document joint en annexe, qui résume en 2 pages et commente en une troisième l’article de 15 pages d’IA. L’idée était de comprendre ses éventuels résultats, et de les exposer de manière accessible, par « réduction[3] » et simplification de cet article ; en effet celui-ci est peu lisible, mal écrit (au sens de : manque de clarté, manque d’exposé des objectifs) – par ailleurs de nombreuses notations souvent superflues en rendent la lecture difficile[4]. Ce travail était d’autant plus nécessaire que dans certains de ses tweets[5] (comme ici), IA en donne un résumé qui ne correspond pas aux résultats de son propre article.

Sur le fond, nous pouvons résumer cet article IA 2017 ainsi : « Démontrer la GGC (Golden Gate Conjecture)[6] équivaut à démontrer celle de Syracuse » ; sachant que la GGC s’énonce ainsi : « Pour tout entier naturel N congru à 5 modulo 8, les orbites de N et de (2N + 1) convergent. » C’est ce que l’on appelle un résultat d’équivalence. Mais rien n’indique que cette équivalence corresponde à une avancée dans ou vers la démonstration : il est même très probable que ce ne soit pas le cas. L’histoire des mathématiques est pavée de conjectures censées en simplifier une autre, y compris quand celle-ci s’est avérée fausse[7]. Dans le problème de Syracuse, il existe aussi d’autres énoncés d’équivalence, en apparence plus puissants que celui d’IA – mais dont rien n’indique là aussi qu’ils permettent d’avancer dans la démonstration[8]. Autrement dit, l’article IA 2017 est vrai, une partie en est non triviale (il n’est pas immédiat de le comprendre)[9], mais est-il original (au sens : apporte-t-il réellement quelque chose) ? L’analyse de la dernière partie de IA 2017, la GGC Golden Gate Conjecture (sa proposition 10), peut être facilement déduite d'un article Cadogan [2000] : ceci réduit de beaucoup l’intérêt d’IA 2017 (nous en discutons ci-après). Nous serons plus catégoriques sur le fait que, contrairement à ce que prétend IA sans précisions, son article puisse apporter des éléments de théorie à la résolution de Syracuse : tel n’est pas le cas.

*

Il est à noter que, fort de cette première analyse, JJLP a aussi tenté de faire le même travail pour l’article suivant d’Aberkane [2020a][10], de 15 pages, mis en ligne en français à peine une semaine après qu’eut éclaté la franche discussion sur Twitter – ce qui suppose qu’IA « l’avait sous le coude » et ne le publiait pas, pour des raisons qui lui appartiennent. A l’inverse de l’article de 2017, la compréhension de cet article de mi-janvier 2020 et sa réduction n’ont pas été possibles, compte tenu de sa rédaction et de son caractère confus et incompréhensible dès l’abord[11] : nous affirmons cela d’autant plus aisément que ce travail avait pu être fait pour le premier article, ce qui prouve si besoin en était le caractère volontaire et sans préjugés de notre démarche.

Enfin, le 28 janvier 2020, alors que nous rédigions le présent document, IA a mis en ligne, cette fois-ci non sur HAL mais sur son blog, un 3e article [2020b] : « At least almost all Collatz orbits attain bounded values, and other significant corollaries on the Syracuse problem ». Le rythme, comme en réponse au fait qu’IA ait été poussé dans ses retranchements sur Twitter, est difficile à suivre ; et peu cohérent avec une élaboration scientifique patiente de résultats successifs. Sur la forme, la rupture de style entre le papier en français de mi-janvier (IA [2020a]) et celui en anglais de fin janvier (IA [2020b]) est saisissante : on est revenu d’un article non mathématique à un article mathématique, mal écrit (analogue à IA 2017). Sur le fond, [2020b] est composé de deux parties : la première reprend les idées de la première partie de IA 2017 en les exposant de façon plus concise, quoiqu’encore avec un luxe de notations la rendant assez difficile d'accès. La deuxième décrit un « algorithme » nouveau, le Golden Gate Automaton (lié au principal « résultat » d’IA 2017, la GGC) : mais tant la description de l'algorithme que les démonstrations des deux « théorèmes » qui en décrivent les vertus sont absolument opaques – il n’a pas été possible de les décoder. L'absence de définition de « almost all » laisse perplexe – tout particulièrement quand IA compare ses résultats à ceux de Terence Tao [2019][12] qui, lui, définit précisément ce qu'il entend par « almost all », puis produit une preuve subtile de 49 pages en faisant usage d'outils d'analyse et de probabilités.

*

Nous revenons à présent sur le premier article IA [2017], non son contenu (déjà évoqué ci-dessus, et résumé en annexe ci-après), mais sur ses conditions de production ; travailler sur un article (ici, IA 2017) amène de facto, et de manière la plus neutre possible, à s’intéresser à son contexte de production. Par ailleurs, la recherche du caractère « original » - ou non - du premier article (IA l’avait présenté ainsi et incitait à vérifier cette originalité) a bien entendu conduit à examiner la bibliographie existante, autre que les deux simples références (AMS 2010 et Science 2015) données par IA en conclusion de son article.

Ce type de travaux sur des orbites de Syracuse qui se rejoignent (to coalesce en anglais) a été l'apanage d'un professeur isolé, à La Barbade (Caraïbes), Charles C. Cadogan[13], publiant dans une revue dont il était lui-même l’éditeur, le Caribbean Journal of Mathematical and Computing Sciences. Ces travaux se déroulent entre 1984 et 2006 (voir une page de bibliographie de ce mathématicien, réf. 1 à 5 pour Syracuse)[14]. Ce mathématicien est décédé en 2015, et il est difficile d’avoir accès aux articles publiés dans cette revue.

En voici les résumés :

ainsi que :

 

Si nous insistons sur cet auteur, c’est parce que l’article de 1996 ci-dessus contient déjà le Théorème 1 et la Proposition 1 d’IA 2017 (p. 3). Un examen de ces articles, si nous pouvions y avoir accès (or, ils sont quasi introuvables) pourrait permettre de trouver d’autres convergences. Mais si nous insistons sur cet auteur, c’est aussi parce que, si IA a eu connaissance de ses articles (p. ex. à Stanford), il y a dans ce cas une troublante similitude entre son article et celui de cet auteur.

*

Notre attention a aussi été attirée par un preprint bien rédigé récent (2019) dans le même esprit (coalescence d’orbites d’entiers suivant divers modulo), écrit par un étudiant d’une université américaine, Roy Burson (Undergraduate Student, California State University, Northridge) ; citant Cadogan dans une bibliographie assez fournie, il démontre lui aussi une conjecture d’équivalence, de type GGC[15]. Si nous le mentionnons, c’est parce que cela situe à notre sens l’article IA 2017 : pour ce qui n'est pas trivial, ce pourrait être un mémoire construit d'étudiant de licence, si c'était lisible.

Enfin, nous devons noter le caractère incongru des mentions que fait IA à ses « résultats » dans son ouvrage grand public de septembre 2018[16]  (pages concernées) ; incompréhensible par la plupart de ses lecteurs, ne correspondant que de loin à la GGC, à énoncés redondants, cette présentation, en plus d’être peu fondée mathématiquement et d’une grande prétention[17], se fait de plus dans un contexte inepte de comparaison avec la biochimie.

*

Les deux co-auteurs ci-dessous ont choisi de publier ce présent document sur internet car c’était à leurs yeux nécessaire – ni sur HAL, encore moins sur arXiv, mais sur le blog de vulgarisation scientifique de l’un d’entre nous (blog qui a fonctionné de 2006 à 2014). Certains lecteurs pourront trouver, nous l’espérons, intérêt à ce document et à la démarche la plus ouverte possible qu’il souhaite manifester.

 

 

A.Moatti et JJLP
7 février 2020

 

(nous tenons à remercier toutes les personnes qui ont participé sur Twitter à l’analyse de ce sujet – et notamment Antoine Bérut, Marc de Falco, Rémi Doris, Benoît Kloeckner…)

(en annexe ci-après, 3 p., analyse et simplification par JJLP de l’article IA 2017) (document complet PDF à télécharger)

 

[1] I. Aberkane, « On the Syracuse conjecture over the binary tree», 15 août 2017, non publié dans une revue, mis en ligne sur HAL.

[2] Qui préfère garder l’anonymat sur internet, mais pas spécifiquement en relation à ce sujet.

[3] Au sens général du terme, comme plus particulièrement au sens culinaire (« réduire une sauce »).

[4] JJLP a introduit les notions de nombre rose et nombre vert, non par ironie envers l’article d’IA qui appelle bleus les nombres impairs et rouges les nombres pairs, mais parce que ces notions rose et vert apportent réellement (à la différence de rouge et bleu) à la fluidité de son résumé ci-après. Ainsi, un nombre x est vert si et seulement si le chiffre qui précède le dernier 0 de son écriture en base 2 est égal à la parité du rang, le rang de N étant le nombre de chiffres 1 terminaux dans cette écriture. IA introduit quant à lui des définitions qui paraissent autant fantaisistes que superfétatoires : glacis, vanilla-related, banana, banana-split,…

[5] Nous ne prenons pas en considération ici les beaucoup plus nombreux tweets provocateurs où IA s’en prend à une communauté universitaire censément veule et ne prenant pas la peine de lui répondre. C’est pourtant ce que nous nous sommes résolus à faire ici, au risque d’alimenter cette moulinette.

[6] L’explication de la designation GGC est donnée par IA: « the author of this article established the Golden Gate conjecture at the Lange Special Collection Reading Room of the University of California, San Francisco, with a view of the Golden Gate Bridge, a name altogether fitting for the definition of a bridge connecting two red numbers as they were colored in his personal notes. » (IA 2017, p. 14).

[7] Comme dans les tentatives de démontrer le 5e postulat d’Euclide, y compris chez des « grands » mathématiciens (p. ex. Adrien Legendre, 1752-1833), en le remplaçant par un énoncé équivalent, mais supposément plus « simple ». Ou dans le problème de la quadrature du cercle.

[8] Voir par exemple Monks [2006, PDF], avec le résultat suivant lequel prouver Syracuse pour une suite arithmétique d’entiers positifs A + Bn (B non nul, aussi grand que l’on veut), équivaut à prouver Syracuse.

[9] Le caractère trivial ou non est détaillé ci-dessous suivant les différentes parties de l’article.

[10] I. Aberkane, « L’intersection des arbres 2-3-4-aires complets sur N forme un repère et construit une solution au problème de Syracuse », non publié dans une revue, daté du 12 janvier 2020, mis en ligne HAL le même jour.

[11] Un collègue a qualifié de « mystico-scientologique » l’article de 2020.

[12][12] IA indique que son article [2020b] serait supérieur à celui de Tao [2019], qui devient un simple cas particulier de ses résultats.

[13] Ce mathématicien est mort en 2015, à l’âge de 79 ans (hommage).

[14] Et plus spécifiquement les articles suivants de Cadogan, 2000-2006 : « The 3x+ 1 problem: towards a solution », Caribbean J. Math. Comput. Sci. 10 (2000), 11 p. ; « Trajectories in the 3x+1 problem”, J. of Combinatorial Mathematics and Combinatorial Computing, 44 (2003), 31 p.;  “A Solution to the 3x+1 Problem”, Caribbean J. Math. Comp. Sci. 13 (2006), 11 p.

[15] Son résultat, clair et bien écrit, est le suivant : la conjecture « Pour tout entier k, les orbites de 2k+1 et 6k+5 convergent » est équivalente à Syracuse. Il est moins fort que celui d’IA, mais constitue un « résultat d’équivalence » assez comparable.

[16] I. Aberkane, L'Âge de la connaissance : Traité d'écologie positive, Paris, Robert Laffont, coll. « Réponses », septembre 2018, 374 p.

[17] « Je ne saurais trop insister sur le fait que ces théorèmes [NB : 7 énoncés précédents, en une à deux lignes chacun], c'est-à-dire ces preuves irréfutables, sont non seulement originales, donc jamais démontrées plus tôt, mais surtout qu’elles donneront l’impression très justifiée de sortir de nulle part [NB : nous nous sommes attachés à montrer le contraire dans la 2e partie du présent document], tout en réduisant considérablement la complexité du problème, ouvrant une faille majeure dans sa difficulté, contredisant ainsi l’affirmation d’in cessibilité dans l’état actuel de nos connaissances. Pourtant, sans aucune ambigüité, jamais je n’aurais pu produire de tels théorèmes sans m’inspirer de la structure des chaînes catalytiques en biochimie. Je peux ainsi affirmer qu’il y a une biochimie du problème de Syracuse […] » (IA, L’âge de la connaissance…, op. cit.)

Partager cet article

Repost0
26 février 2015 4 26 /02 /février /2015 12:06
Livre  "Au Pays de Numérix" (2015)

Mon plus récent livre (février 2015) traite de l'Internet de la connaissance : Au Pays de Numérix, PUF, février 2015 (180 p., 14€ version papier, 11€ version électronique) (site éditeur)

 

4e de couverture

Championne incontestée de l’« exception culturelle », la France l’est aussi des postures prises contre Google ou Wikipédia. Elle leur oppose des projets complexes et coûteux : qu’est-il par exemple advenu du projet « Bibliothèque numérique européenne », censé contrer Google Livres, voire Google lui-même ? Sans verser dans la technophilie ou l’angélisme du tout-numérique, cet essai analyse les fondamentaux – quasi idéologiques, au pays de Numérix – de cette défiance à l’encontre de l’Internet de la connaissance. Ainsi donc, les Français, qui utilisent massivement Google ou Wikipédia, ne seraient-ils pas capables d’y exercer leur discernement ? Et que penser des positions de défense exacerbée des droits en tout genre – notamment ceux des données culturelles publiques (iconographie muséale, portraits officiels, émissions de radio) – qui en viennent à nuire à la diffusion numérique du savoir, avec un effet inverse à l’objectif de rayonnement culturel national ? N’est-il pas temps d’imaginer une autre forme d’exception culturelle, en faveur de la diffusion de la connaissance ?

Partager cet article

Repost0
24 avril 2014 4 24 /04 /avril /2014 06:00

J'aime bien les mois d'avril pour publier, mon premier livre était sorti en avril 2006, mon troisième en avril 2009. Ce mois-ci, avril 2014, sort mon sixième livre (hors deux livres dirigés chez Cassini). D'ailleurs avril est un anagramme de livra (livraison), et fait aussi penser à livre.


Je m'aperçois aussi que j'ai créé ce blog il y a exactement 8 ans, mon premier billet datant du 25 avril 2006. Et aujourd'hui nous sommes le 24 avril 2014, ce qui clôt un cycle de 8 ans. 230 billets, agrémentés de 340 images. Un livre issu du blog, les contenus reliés : au double sens où le livre est relié, et les sujets le sont entre eux – ce livre, Récréations mathéphysiques (Pommier 2011), aurait pu avoir plus de succès, je le recommande vivement.

Entretemps, en ces 8 années, j'ai fait de l'histoire des sciences : une thèse sur Coriolis (1792-1843), un site BibNum (MESR / CERIMES / SABIX), avec maintenant 125 textes, et cela continue – avec aussi deux ouvrages issus de ce site, (2011) et
site BibNum qu'il m'est arrivé de commenter ici dans ce blog. Avec aussi une douzaine de Bulletins de la SABIX, société savante que j'ai présidée sur cette période, avec la publication de deux bulletins/an (dont Poincaré, Lamé, Liouville), et dont nous avons mis les contenus en ligne sur revues.org.    

 

En ces 8 années aussi, je me suis intéressé à l'alterscience, concept que j'ai tâché de définir, en dernière partie de mon second ouvrage Einstein, un siècle contre lui (2007), et beaucoup plus en détail dans mon précédent ouvrage Alterscience. Postures, dogmes, idéologies (2013). sur la base de mon séminaire 2008-2010 à l'EHESS. J'avais au départ conçu ma démarche comme liée à la vulgarisation, en défense de la science ; j'ai un peu évolué (pour un chercheur ce n'est pas illogique), je tâche d'analyser l'alterscience de manière plus neutre, plus évocatrice (mon blog sur Pour la Science, depuis octobre 2013).

Mais il est vrai que la vulgarisation m'a moins inspiré ces deux dernières années – le rythme du présent blog s'en est ressenti. Quelques commentaires désagréables ad hominem sur un billet spécifique d'août 2012, pourtant informatif, m'ont ému ; mais j'ai oublié cela, et d'ailleurs le billet correspondant a été sélectionné dans le livre Les meilleurs blogs de science en français, Agence Science-Presse (Montréal, 2013) !


Alors, peut-être est-il temps de clore ce blog, fruit d'un cycle entamé il y a 8 ans. Rien n'est éternel dans la vie, et sûrement pas un blog ! Il faut se renouveler, et puis je tiens d'autres blogs, et puis Twitter, et puis...

Les blogs : profusion sur le Web, du meilleur et du pire, y compris en sciences ; parfois trés répétitifs. Livres : comme les films, restent six semaines en librairie, quand ils arrivent jusque là. Revues de vulgarisation : comment renouveler les contenus, les angles d'attaque d'un sujet ? Twitter : si 10% de mes 1300 suiveurs lisent un de mes tweets, cela correspond à l'audience quotidienne du présent blog ; mais ce n'est pas le même public non plus. Alors, quel est le meilleur moyen de faire passer ses messages et ses idées, y compris de vulgarisation scientifique, dans la société d'hyper-information ? Je n'ai pas, ou n'ai plus, la réponse à cette question. En tout cas, je n'ai pas envie de faux semblants, "tenir un blog" alors que je ne l'alimente plus.

Avec ce cycle de 8 ans se clôt aussi ma présidence (statutairement limitée à deux mandats de 4 ans) de la SABIX, société savante que j'ai orientée vers le numérique. Je démissionne aussi du comité éditorial de la revue Tangente, que j'ai accompagné pendant 8 ans.

Du point de vue de la vulgarisation, je reste attaché à un style de vulgarisation mêlant les maths et la physique, sans craindre d'utiliser des formules simples, et en se rattachant le plus possible à la réalité, y compris en mathématiques. Avec l'importance d'une iconographie de qualité, parlante : ce que j'ai développé aussi sur BibNum, et dans mes activités de contributeur Wikipédia. Et puis des billets de blog courts
ça me paraît indispensable en vulgarisation.

 

Je reste disponible pour des interventions de vulgarisation en lycées – le réel est tout aussi gratifiant que le virtuel; je ne suis que peu sollicité dans les Promenades mathématiques en lycée de la SMF, une fois par an au grand maximum – il y a une réel cloisonnement entre enseignement traditionnel et vulgarisation, en tout cas vu de ma position.

J'ai apprécié de faire partie (depuis 2007) de la communauté de blogs du Café des sciences : tous blogueurs plus jeunes que moi, enthousiastes, dynamiques, de tous horizons (journalistes, ingénieurs, chercheurs, France, Suisse,...). Des projets, de bonnes réunions, un WE scientifique au CERN, et puis... du trafic sur le blog !

J'en profite aussi pour remercier mes lecteurs attachés à ce blog (même si j'ai eu peu de retours là-dessus ; ça manque aussi, les petits signes, quand on blogue ! Je ne sais même pas si mes lecteurs sont des professeurs, des élèves, ou s'ils sont hors du milieu Education nationale). Moi-même suis évidemment attaché à mon blog : mais les blogueurs doivent-ils être identifiés ad vitam à leur blog ? N'y a-t-il pas là aussi une forme de posture, parfois : "je suis tel professeur ou tel chercheur (en sciences ou dans d'autres matières), et mon blog fait autorité, attention !".

 

Alors, 8 ans, ça suffit ? En tout cas, ce 24 avril, oui ! (24/4/2014, c'est un joli nombre, ça) !

 

Mais, "tant qu'il y a de la vie, &c.": peut-être y aura-t-il une nouvelle formule pour revivifier les contenus ici présents ? J'y réfléchis. Se renouveler. Renouveler ses formats et ses canaux de diffusion. La suite, peut-être, dans quelque temps ("Les Indispensables, le retour").

Ce billet est bigrement trop long, mais j'allais oublier, au fait : mon livre, sorti le 10 avril
c'était l'objet de ce dernier billet ! Le Mystère Coriolis, CNRS Editions, 240 pages illustrées.

 

1-Couverture.jpg

 

(Sommaire du livre, PDF sur ce blog)
(Avant-Propos en ligne sur Actualitté)

Partager cet article

Repost0
9 février 2014 7 09 /02 /février /2014 18:26

J'aurais pu appeler ce billet "Inversion de la courbe de la durée du jour", mais, comme l'a rappelé Etienne Klein sur France-Culture, cette notion d'inversion de courbe (utilisée pour le chômage) est aussi erronée qu'incompréhensible.

 

Mais restons dans l’astronomie, si vous le voulez bien. On le sait, la durée du jour dans nos régions augmente entre le solstice d’hiver (21 décembre) et celui d’été (21 juin). Je me fonde sur les tables du site ‘Calendrier solaire’ (désolé ce site a des pubs, mais il est pratique) : elle passe de 8h7mn à 16h2mn (un quasi doublement !).


Duree-du-jour.JPG

 

Mais ce qui nous intéresse ici est la variabilité de cette variabilité : je me suis rappelé cela en remarquant que depuis début février, on remarque beaucoup plus que le Soleil se lève de plus en plus tôt, beaucoup plus qu’en janvier où on ne le remarquait guère. J’ai fait les calculs pour vous,

 

Période Allongement en minutes Nb. de jours  Allongement moyen quotidien
22 décembre (2013) — 21 janvier

44

31 1'25''
22 janvier — 21 février
97  31   3'08''
 22 février — 21 mars
  101   28   3'36''
  22 mars — 21 avril
  113   31   3'39''
  22 avril — 21 mai
  87   30   2'54''
  22 mai — 21 juin (2014)
  38   31   1'13''
 

Total 480 = 8h

(on retrouve les 8h de ci-dessus)

   


La durée du jour augmente lentement après le solstice d’hiver, et diminue lentement avant le solstice d’été. Autrement dit, elle varie lentement autour des solstices : car la valeur d’une fonction varie peu au voisinage de ses extrema. On remarquera d’ailleurs qu’à l’équinoxe (le 21 mars), qui n’est pas un extremum, c’est là que la variation est la plus forte (seule fois où apparaît +5mn, le 20 mars).

 

Et tout ceci est connu depuis des lustres et prédictible pour des lustres. L’astronomie, ce n’est pas l’économie ou la politique : « inverser une courbe », c’est fastoche !

 

 


 

[pour ceux qui veulent aller plus loin : à l'équinoxe, c'est la variabilité qui est à son maximum — la dérivée seconde est nulle. C'est un point d'inflexion : la durée du jour est toujours croissante, mais en 'accélérant' (variabilité croissante) entre solstice d'hiver et équinoxe, et en 'décélérant' entre équinoxe et solstice d'été]

 

[pour ceux qui veulent se raccrocher à des formules : on peut se représenter la fonction  durée du jour comme un cosinus entre sa valeur maximale (solstice d'été) à x = 0 et sa valeur minimale (solstice d'hiver) x = pi. Pour ces deux extrema, la dérivée, fonction sinus, est nulle et la fonction cosinus varie peu autour de ces extrema. L'équinoxe est pour x = pi/2 : la dérivée (sinus) est maximale, la dérivée seconde (cosinus) est nulle : c'est un point d'inflexion]


Partager cet article

Repost0
14 janvier 2014 2 14 /01 /janvier /2014 06:56

Nous avons vu avec Berger, dans notre précédent billet, pourquoi il n’y a que 5 polyèdres réguliers (convexes) – nous nous sommes pour cela appuyés sur la relation d’Euler SA + F = 2 (nombre de sommets S, d’arêtes A, de faces F), valable pour tout polyèdre convexe. Toujours avec Berger, voyons une extraordinaire démonstration de cette relation, démonstration qu’il appelle affine.

 

On prend n’importe quel polyèdre convexe, et on imagine le couper par un plan qu’on va progressivement faire descendre du sommet supérieur du polyèdre (en le mettant dans une position donnée, peu importe) au sommet inférieur. Le dessin ci-dessous parlera mieux que moi (j’adore ces dessins manuscrits de Berger, nous en avions déjà utilisé un ).

EulerFiormule-BergerDessin Marcel Berger, in Géométrie vivante, Cassini 2010.

 

On peut prendre n’importe quelle direction de plan, à une condition : que ces plans parallèles ne contiennent jamais plus d’un sommet du polyèdre (on se convaincra aisément que c’est une condition facilement réalisable). On va alors faire le compte en faisant descendre le plan. En haut, quand le plan touche le sommet sans être entré dans le polyèdre, la somme (on appelle ainsi SA + F, par simplification) vaut 1 (S=1, A=F=0). En entrant depuis le sommet du haut dans le polyèdre, on capte autant de faces que d’arêtes (du sommet partent h arêtes, et le sommet appartient à h faces – comme déjà écrit, pour s’en convaincre, aplatir le voisinage du sommet sur un plan, et constater qu’il y a dans ce voisinage autant d’arêtes que de faces, i.e. autant d’arbres que d’intervalles) : donc S reste égal à 1. Continuons à faire descendre notre plan de coupe, et l’on rencontre un premier sommet dans cette descente (à chaque fois, l’on n’en rencontre qu’un puisque c’est la condition imposée au plan de coupe). Notre somme s’incrémente de +1 (le sommet), mais regardons ce qui se passe au niveau F et A. Je fais un dessin aplatissant le sommet, moins joli que celui de Berger.

Euler-afine.JPG

  À chaque traversée de sommet, S gagne 1, (A-F) gagne 1, S-A+F reste stable.

 

Le plan et son sens de descente sont en rouge. Il va « capter », dans ce cas, h’ nouvelles arêtes (ici 3), et h’ – 1 nouvelle faces (ici 2). Sur un sommet traversé, le nombre d’arbres (arêtes) n’est pas égal au nombre d’intervalles (faces), car les nouvelles arêtes « encadrent » les nouvelles faces. Ce qui fait qu’au passage d’un sommet qui n’est ni le premier ni le dernier, on a :

 

 

Avant

Après

sommets

S

S + 1

arêtes

A

A + h’

faces

F

F + h’ - 1

Somme d’Euler

transitoire

SA + F = 1

(comme au départ)

(S +1) – (A+ h’) + (F + h’ – 1)= SA + F

(inchangée)

 

Là, j'ai un peu trop décortiqué pour convaincre (ce qui m'oblige à introduire une variable h'). Une manière plus concise : pendant la “traversée” du polyèdre par le plan de coupe, la somme reste égale à 1, puisqu’à chaque sommet S s’incrémente de 1, mais (A-F) aussi, ce qui fait que SA + F reste constant, égal à sa valeur de départ, 1. Jusqu’à récupérer le dernier sommet, en bas, où il n’y a plus faces et arêtes en dessous, et la somme s’incrémente de 1 (le dernier sommet), pour arriver à 2. Comme l’écrit Berger sur son dessin, et c'est bien connu, 1 + 1 = 2. CQFD.

 

 


1. Pour aprofondir, on s'aperçoit avec Wikipédia que Descartes avait déjà trouvé dans un manuscrit inédit (écrit en 1680) la relation qu'Euler formalise en 1752, ce qui fait qu'en France (surtout sur Wikipédia, car pour ma part j'ai toujours entendu 'Relation d'Euler'), on appelle cela Théorème de Descartes-Euler.

 

2. Plus intéressant, on trouvera aussi sur l'extrait Wikipédia ci-dessus une extraordinaire généralisation aux dimensions supérieures par Poincaré 1893 :
Poincarepolyedres.png

Retenons que S – A + F vaut alternativement 0 (dans toutes les dimensions paires, à commencer par 2, dans le plan avec des polygones) ou 2 (dans toutes les dimensions impaires, à commencer par 3, dans notre espace avec des polyèdres).

Partager cet article

Repost0
8 janvier 2014 3 08 /01 /janvier /2014 06:43

Dans le plan, en dimension 2, il y a une infinité de polygones réguliers : triangle équilatéral, carré, pentagone, hexagone, n-gone (voir dans mon premier ouvrage, p.68-69, l’approximation par Archimède de pi au moyen du périmètre des polygones réguliers inscrits dans le cercle). Or, en dimension 3, dans l’espace, n’existent que cinq polyèdres réguliers convexes (ou solides de Platon — encore un Grec). Pourquoi ? Comment ? De qui, de quoi ? Pour la géométrie, une référence, un guide de voyage : le Berger (Géométrie vivante, Cassini, 2010) comme une étoile qui nous… guide. Style direct et sans bavures. On en avait déjà eu deux échantillons en 2011 (polygones étoilés et enjoliveurs) et 2009 (cercles du tore) dans ce blog, accompagnant un des textes BibNum sur lequel je me suis le plus amusé à travailler.
CouvertureBerger.jpg

 

Le mage Berger utilise la relation d’Euler, bien connue dès la maternelle (je plaisante à peine : on pourrait la faire toucher du doigt aux enfants avec les cubes de leurs jeux de construction, ou avec les ballons de foot) : S – A + F = 2, où S est le nombre de sommets, A le nombre d’arêtes, F le nombre de faces. Il l’écrit subtilement f0 – f1 + f2 = 2 (où f0 est le nombre d’entités sans dimension, des points, les sommets, S ; f1 est le nombre d’entités à une dimension, les arêtes, A ; etc.). Gardons la notation classique, et introduisons h le nombre d’arêtes partant de chaque sommet, et k le nombre de sommets par face.

 

Pour ceux qui veulent toucher du doigt, ou qui veulent des chiffres concrets, voici le tableau pour les 5 polyèdres réguliers convexes :

 

 

S

A

F

h

k

Tétraèdre

4

6

4

3

3

Cube

8

12

6

3

4

Octaèdre

6

12

8

4

3

Dodécaèdre

20

30

12

3

5

Icosaèdre

12

30

20

5

3

http://upload.wikimedia.org/wikipedia/commons/7/70/Tetrahedron.gif

http://upload.wikimedia.org/wikipedia/commons/4/48/Hexahedron.gif

http://upload.wikimedia.org/wikipedia/commons/1/14/Octahedron.gif

 

 

 

http://upload.wikimedia.org/wikipedia/commons/7/73/Dodecahedron.gif


http://upload.wikimedia.org/wikipedia/commons/e/e2/Icosahedron.gif

 

 

 

 

 

 

(animations ci-dessus Wikimedia Commons, auteur Cyp, Creative Commons cc-by-sa)

(de haut en bas dans l'ordre du tableau, qui est le nombre croissant de faces)

 

Un sommet appartient à h faces (pour s’en convaincre, aplatir le voisinage d’un sommet sur un plan : le nombre d’arêtes partant du sommet, h, est égal au nombre de faces qui sont entre ces arêtes). Le nombre total de sommets, S, est donc égal à Fk (nombre de faces × nombre de sommets par face) divisé par h, puisqu’un sommet appartient à h faces (vérifier avec le tableau). Le nombre total d’arêtes, A, est égal à Sh (nombre de sommets × nombre d’arêtes partant de chaque sommet), divisé par 2, puisqu’une arête relie deux sommets (« appartient » à deux sommets).

S = Fk/h

A = Sh/2 = Fk/2

 

Reprenons la relation d’Euler, S – A + F = 2, et réinjectons ces valeurs.

 

Fk/h Fk/2 + F = 2

Fk + Fh = 2h + Fkh/2  > Fkh/2

k + h > kh/2

1/h + 1/k > 1/2

 

Or, si l’on réfléchit, il y a peu de couples d’entiers {h,k} (strictement supérieurs à 2) vérifiant cette propriété : {3,3} (tétraèdre), {3,4} (cube), {4,3} (octaèdre), {3,5} (dodécaèdre), {5,3} (icosaèdre). À partir de 3,6, on a 1/h + 1/k ≤ 1/2, donc la relation ci-dessus n’est pas vérifiée : le polyèdre n’existe pas.

 

Terminons avec Berger et sa magnifique phrase, une fois démontré qu'il n'existe que cinq polyèdres au plus : "L'existence sera vue plus bas"! Bon, pour l'existence, en ce qui nous concerne, nous nous contenterons des figures ci-dessus.

 

À suivre bientôt, sur le même thème.

Partager cet article

Repost0
7 janvier 2014 2 07 /01 /janvier /2014 06:31

Faisons en cette nouvelle année un bilan d’activité de ce blog, ouvert il y a bientôt huit ans, en 2006 année de mon premier ouvrage. 457 000 visiteurs sur 92 mois (c’est pas mal d’inscrire son action dans la durée, 227 articles au compteur), ça fait 165 visiteurs/j. Il y a eu des années plus fastes (2008-2009, avec des moyennes de 250/j), mais, bon, on ne se plaint pas. On est à présent, début 2014, sur cette fréquentation moyenne de 165/j, et il faut remercier Twitter (où je suis actif @AlexandreMoatti) et Café des sciences (dont je suis membre depuis 2007) pour les lecteurs qu’ils amènent.

caf--des-sciences.png

 

En 2012, j’ai fait une dizaine de billets, ce qui est peu. Il faut dire que j’ai publié un ouvrage début 2013, Alterscience, qui a fait l’objet d’un certain nombre de recensions. J’ai aussi ouvert un blog Alterscience sur le site du magazine Pour la Science à leur demande. Pour moi, l’analyse des idéologies utilisant la science est indissociable de la vulgarisation scientifique (comme le disait le regretté Martin Gardner).

  Martin_Gardner.jpeg

Martin Gardner (1914-2010) : la tête du type qui réfléchit

(image WikiCommons, auteur Konrad Jacobs, Erlangen)

 

Ma dizaine de billets 2013 sur le présent blog : avant les vacances d’été un billet de mécanique (patinage), un billet d’arithmétique (nombres premiers jumeaux), une heuristique de probabilités (rencontres improbables), un billet de géométrie (Bibracte dans le Morvan). Et puis à partir de la rentrée je me suis lancé dans d’autres domaines, moins « sciences exactes », plus spéculatifs : technologie (adieu et merci Nokia !), écologie (aménagements ferroviaires), heuristique physique (temps caractéristique) ou mathématique (nombre d’abonnés Twitter) des réseaux sociaux. Je continuerai à la fois en sciences exactes, et moins exactes.

 

On refera des maths, dès demain. De la géométrie. C’est programmé. Le présent billet n’était qu’un teasing. En attendant révisez votre relation d’Euler (sommets, faces, arêtes).

Partager cet article

Repost0
18 décembre 2013 3 18 /12 /décembre /2013 16:58

J’avais déjà commis un billet de blog à propos des réseaux sociaux, où je faisais une hypothèse hasardeuse sur leur temps caractéristique, peut-être vraie, peut-être fausse – en tout cas correspondant à mon intuition. Je continue sur cette voie heuristique, en essyant de trouver ce qui pourrait être quantifiable.

 

Il y a longtemps que je m’interroge sur l’existence d’une relation (allez, carrément : une fonction ?) entre le nombre d’abonnés NA que l’on a sur Twitter, et le nombre de tweets NT que l’on a faits. Sachant que ce sont sans doutes les dérivées dans le temps de ces deux paramètres qui interviennent avant tout : NA/∂t (l’augmentation de votre nombre d’abonnés) semble très sensible à NT/∂t (la fréquence de vos tweets). Il y a bien évidemment d’autres facteurs, comme la ‘célébrité’ : mais j’ai la vague intuition que ce pourrait n’être qu’un facteur proportionnel d’amplification, K, qui ne change pas autrement la structure de la relation cherchée. De toute façon, l’on serait bien incapable de quantifier cette ‘célébrité’, d’autant que celle-ci peut être extrinsèque à Twitter (un journaliste, un homme/femme politique auront NA grand), mais, plus intéressant : elle peut être intrinsèque : telle personne devient une célébrité grâce à Twitter. Dans ce dernier cas, on pourrait imaginer un « effet boule de neige » quantifiable (une exponentielle ?).

 

Un autre paramètre quantifiable intervient : le nombre de retweets NR que vous avez sur vos tweets. C’est, en théorie, le seul moyen que vous avez pour que NA augmente (je pars du principe d’un fonctionnement dynamique et non statique : il est rare que quelqu’un vienne spontanément sur votre fil Tweeter et décide de s’y abonner – il y est incité par un retweet ; sauf justement cas de ‘notoriété’ extrinsèque).

 

En incise, une autre question que je me pose : quand je fais un tweet, combien parmi mes NA le verront-ils ? (ça dépend bien sûr de l’heure de la journée). Mais donnons un chiffre : 5, 15, 25% grand maximum ?

 

Retour à la question de départ (relation NA/NT mais surtout leurs dérivées – car c’est plus une communauté de flux que de stocks). Je n’ai pas évoqué le nombre d’abonnements NAb que vous avez, et s’il intervient. En fait, c’est surtout le NAb qu’a chacun de vos abonnés qui compte – à cet égard on pourrait parler de facteurs secondaires (non qu’ils soient moins importants que les facteurs primaires décrits ci-dessus, mais parce qu’ils concernent vos abonnés et non vous – un paramètre pour chacun de vos abonnés – ce qui conduit à une matrice). Car plus ils ont d’abonnements, moins ils voient vos tweets, et moins ils vous retweetent (c'est purement probabiliste, indépendamment de l'intérêt de vos tweets !). Et plus ils ont d’abonnés, plus les chances que ceux-ci s’abonnent à vous lors des retweets est grande. Pour votre nombre d’abonnés (NA), cela joue comme l’algorithme matriciel du page ranking Google, déjà évoqué de manière simpl(ist)e dans ce blog : 1) [Il est intéressant d’être référencé par des pages qui sont-elles mêmes bien classées]>>> Il est intéressant d’être suivi par des personnes qui ont beaucoup d’abonnés. 2) [plus la page i possède de liens vers d’autres pages, plus l’intérêt qu’elle porte à la page j est dilué] >>> plus vos abonnés NA ont eux-mêmes d’abonnements NAb, moins ils vous suivent et vous retweetent.

 

Il faudrait aussi considérer « l’effet local », c'est-à-dire le fonctionnement en îlots, communautés : certains groupes se répondent et se retweetent beaucoup plus entre eux : dans leur ‘matrice globale’, ils auraient des sous-matrices très actives, permettant d’augmenter plus vite NA, mais avec effet de saturation (une fois qu’on a râtissé dans sa communauté).

 

Je l’ai dit, Twitter est plus une affaire de flux que de stocks. Je pense que NA baisse peu même si la fréquence ∂NT/∂t chute. C’est ce qu’on appelle une élasticité à la baisse faible. Allez voir @jeffpulver : il a eu tweeté, mais il s’est calmé – il reste néanmoins avec ses 498 000 abonnés (mais il les avait déjà en juin – il n’atteint pas encore les 500 000 : ∂NT/∂t et ∂NA/∂t ont chuté, mais NA pas tellement, sans augmenter toutefois).

 

Et puis heureusement, il y a toujours des singularités (mathématiques !) dans toute fonction. Je cherchais une image pour ce billet, voilà une belle singularité qui défie toute recherche de relation NA vs. NT (notre problématique initiale), et en plus cette singularité est dans le domaine des maths:

 Images-des-Maths.JPG

(0 tweet, 0 abonnement, 198 abonnés / merci à @enroweb de m’avoir signalé ce compte singulier, dont NA peut augmenter sans que les autres chiffres ne décollent) (qu'Images des maths ne m'en veuille pas de ce ciln d'oeil , ou qu'ils deviennent actifs sur Twitter !)

 

Plus que le singulier, le totalement absurde (c'est pas mal aussi d'avoir cela en maths): pendant un moment, j'ai eu plus d'abonnés que de tweets (NA > NT); IL y a eu un moment, en juin, où NA = NT, moment fugace. Aucune signification.

 

Voilà, ce sont ici quelques pistes de réflexion, pour moi comme pour mon lecteur. Il existe sans doute des articles scientifiques sur ce sujet-là (spécifiquement Twitter). N’hésitez pas à me les faire connaître. Mais j’ai préféré lancer ces quelques pistes en suivant mon intuition, en espérant qu’elles vous seront utiles.

Partager cet article

Repost0
3 novembre 2013 7 03 /11 /novembre /2013 22:09

Les aménagements de voie ferrée font partie du développement technologique et économique : peuvent-ils être "écologiques" (dans un sens assez large, avec des guillemets à l’anglaise, comme ces gens qui marquent leur discours oral d’un geste des deux mains) ? L'aménagement fait en 2011 du TGV Paris-Genève est à mon sens utile et harmonieux – appelons cela "écologique".

 

Les habitués du Paris-Genève ont en effet remarqué que depuis 2 ans, le temps de parcours a été diminué d’environ 25 mn (passant de 3h30 à 3h05 soit -12%), par réhabilitation de la ligne du Haut Bugey entre Bourg-en-Bresse et Bellegarde-sur-Valserine (j’adore le nom complet de cette ville). Cette réalisation est un modèle du genre : réhabilitation de la ligne (il existe depuis 1850 de nombreuses lignes désaffectées !) et non construction d’une nouvelle ligne, maintien de la circulation sur une voie et non construction d’une deuxième voie parallèle,… Les paysages ont été préservés, le coût d’aménagement réduit (320M€ quand même) ; la circulation à une voie (sans doute le seul tronçon TGV à une voie !) pendant 50 mn nécessite simplement une bonne organisation du trafic. Bref, un aménagement écologique, au sens d’intelligent (ce n’est pas toujours le cas).

Trace_ligne_haut_bugey.jpg

Le trajet de l'ancienne ligne (en rouge) et de la nouvelle (en bleu), qui fait gagner 25 mn (WikiCommons auteur Oldboltonian).

 

Les amateurs de problèmes de trains et de robinets à l'ancienne pourront vérifier que les trains ne se croisent pas sur cette ligne (heureusement, puisqu'elle est à une voie) :

 

BV       08h09             15h01             17h00            

BB       08h55             15h54             17h54            

 

BB       9h00               14h04             18h05             21h04

BV       9h47               14h58             18h57             21h51


D'autres aménagements ferroviaires me paraissent plus contestables. Ainsi la construction en 2013 du viaduc de Courbessac en pleine ville de Nîmes, pour éviter un point de rebroussement (au sens mathématique : le train quittait Nîmes puis après quelques centaines de mètres, repartait dans l'autre sens, un aiguillage changé l'orientant vers Alès). C'est une énorme infrastructure au-dessus des voies, pour gagner 8mn (temps surévalué ?) sur un trajet de 40mn (soit -20%) (coût 40M€). Je risque de me voir critiquer comme exprimant une position parisienne : « gagner 20mn sur Paris-Genève, OK, mais que des Alésiens gagnent 8 mn sur leur trajet quotidien, ce n’est pas écologique ! ». Peut-être est-ce en effet une position typiquement « bo-bo » (à savoir : les aménagements qualifiés d’écologiques sont ceux qui m’arrangent — ex. les éoliennes, c'est bien quand c'est loin de ma maison de campagne). Mais la lourdeur du chantier et la longueur du viaduc à Nîmes m'avaient fortement impressionné. À discuter : certains aménagements peuvent-ils être qualifiés d'écologiques et d'autres non ? Pourrait-on trouver des critères (je n'ose dire : scientifiques...) pour les définir ainsi ?

Gare_Nimes_viaduc_Courbessac_2.jpg En haut, le viaduc en construction (WikiCommons auteur G CHP). En bas, l'emprise totale du viaduc mis en service cette année, qui permet d'éviter le V (on ne voit pas la pointe du V, en bas hors photo ; la gare de Nîmes est aussi hors photo, un peu plus loin sur la gauche) (image AlèsCévennes, agglomération d'Alès)
viaduc-courbessac-01-copie-1.jpg

Partager cet article

Repost0
6 septembre 2013 5 06 /09 /septembre /2013 11:33

J'ai récemment appris que Nokia arrêtait son activité "terminaux mobiles" en la revendant à Microsoft (article Slate, site toujours très bien documenté). Nokia, ç'a été de la pâte à papier, ça s'est renconverti dans le GSM grâce à un dirigeant clairvoyant et dynamique, Jarma Ollila : faisons confirance à cette entreprise pour trouver une réorientation !

 

Mais l'objet de mon billet sur ce blog de sciences (/techno) est de rendre hommage à l'esprit innovant de cette entreprise, avec un souvenir personnel et professionnel : le NOKIA 7110, sorti en France en octobre 1999.

Nokia_7110_open.png
Image WikiCommons GFDL (auteurs Falense/ Opspins)

 

C'était le premier téléphone à avoir un browser WAP (internet mobile) - càd à donner accès à l'Internet mobile (et cela n'était pas grand'chose à l'époque : il fallait créer aussi des sites WAP). Début 1999, quittant alors Alcatel entreprise au management déficient (p. ex. Tchuruk, Cornu, Bravo — le premier étant largement responsable de l'ambiance délétère)[1] [bref l'inverse de Nokia des années 1990], j'avais fondé une petite SSSI de solutions GSM (localisation par triangulation, internet mobile WAP). Mes collaborateurs (une dizaine) et moi-même attendions comme le Messie d'avoir le NOKIA 7110 entre les mains. Et nous avons été sans doute parmi les premiers en France à réaliser pendant l'automne 1999 des applications WAP. L'une était pour le département recherche de Veolia Transport (horaires de bus sur mobile). L'autre était pour un courtier en céréales de la Brie, l'entreprise Plantureux, qui souhaitait équiper ses clients (gros) agriculteurs de Nokia 7110 pour leurs commandes en temps réel en fonction des cours de bourse des céréales !

 

nokia_7110_display.jpg
Image portail mobile cellular.co.za

Séquence nostalgie : je me rappelle notre émotion à tous quand notre première application a fonctionné (le 1er décembre 1999 je crois) - c'était magique, quelques lignes noires sur un fond vert, genre Minitel ; on pouvait aussi programmer des images, jouer au Tétris, etc. Je n'ai pas gardé de saisie d'écran de mon activité 1999-2000 (dommage, j'aurais aimé vous montrer mes propres applications), mais ça ressemblait beaucoup à l'image ci-dessus).

 

La gamme des Nokia 7110, précurseurs, n'aura pas duré longtemps, elle s'est éteinte trois ans plus tard (d'ailleurs mon entreprise aussi). Mais si je retrouve mon Nokia 7110, je suis sûr qu'il fonctionnerait encore ! Il ne faut pas être trop en avance dans l'innovation, ce qu'était Nokia.

 

[Je m'aperçois que depuis trois ans et demi, j'ai un Nokia E71, après quelques infidélités : ce n'est pas le smartphone dernier cri, mais solide, satisfaisant, jamais en panne.]

 

Merci Nokia de m'avoir fait rêver non avec des bonhommes verts mais avec ces écrans verts !!!



[1] J’avais, lors d’un hommage à Georges Besse à l’École des mines de Paris en novembre 2011, émis l’idée que la communauté polytechnicienne ne devrait pas faire l’économie de l'étude des erreurs de management ayant conduit certaines entreprises au gouffre financier ou stratégique. Péchiney (avec J.P. Rodier, lointain successeur de Besse) en est un autre exemple. Qu’il concerne des énarques, des polytechniciens, ou d’autres types de dirigeants, cet aggiornamento est à faire – cette histoire est à écrire, sans complaisance.

Partager cet article

Repost0

Articles Récents

Alterscience (janvier 2013)

Mon livre Alterscience. Postures, dogmes, idéologies (janvier 2013) détails.


CouvertureDéf


Récréations mathéphysiques

RécréationsMathéphysiques

Mon dernier ouvrage est sorti le 14 octobre 2010 : Récréations mathéphysiques (éditions Le Pommier) (détails sur ce blog)

Einstein, un siècle contre lui

J'ai aussi un thème de recherche, l'alterscience, faisant l'objet d'un cours que j'ai professé à l'EHESS en 2008-2009 et 2009-2010. Il était en partie fondé sur mon second livre, "Einstein, un siècle contre lui", Odile Jacob, octobre 2007, livre d'histoire des sciences (voir billet sur ce blog, et notamment ses savoureux commentaires).

Einstein, un siècle contre lui