Overblog
Suivre ce blog Administration + Créer mon blog

Pourquoi ce blog ?

CouvPocheIndispensables
J'ai créé ce blog lors de la sortie de mon livre "Les Indispensables mathématiques et physiques pour tous", Odile Jacob, avril 2006 ; livre republié en poche en octobre 2011 (achat en ligne) (sommaire du livre).
Je développe dans ce blog des notions de mathématiques et de physique à destination du plus large public possible, en essayant de susciter questions et discussion: n'hésitez pas à laisser vos commentaires!

Rechercher

Indispensables astronomiques

Nouveauté octobre 2013, mon livre "Les Indispensables astronomiques et astrophysiques pour tous" est sorti en poche, 9,5€ (éditions Odile Jacob, éidtion originale 2009). Comme mon premier livre (Les Indispensables mathématiques et physiques), c'est un livre de notions de base illustrées avec des exemples concrets, s'appuyant sur les mathématiques (géométrie notamment) pour l'astronomie, et sur la physique pour l'astrophysique. Je recommande vivement sa lecture.

Communauté de blogs

18 février 2009 3 18 /02 /février /2009 10:04
Oui c'est vrai ma démonstration (billet 2) à l'énigme (billet 1) est lourde, "cartésienne", j'avais prévenu ! Alors formalisons la démonstration géniale esquissée par Ludovic, Serma et Hervé en commentaires du billet 1, une démonstration "euclidienne" dirons-nous, purement géométrique, avec un joli jeu de miroir. Voilà, figure à l'appui :

Rappelons l'objet : trouver pour le cavalier le chemin le plus court de A à B sachant qu'il doit mener boire sa monture à la rivière (en bleu). Prenons un chemin quelconque ACB (en vert) reliant A et B en passant par la rivière en C. Prenons le symétrique du segment AC par rapport à la rivière : il nous donne A'C, et la distance ACB est égale à la distance A'CB. On constate aisément que la distance A'CB (donc ACB) sera toujours plus grande que la distance A'MB, ligne droite reliant A' à B, sauf si C est en M. Le plus court chemin après avoir mis le premier segment en miroir est A'MB, donc le plus court chemin avant la mise en miroir est AMB, c'est la réponse cherchée.

Mais tout ceci, Descartes et sa lourde démonstration d'analyse, Euclide et sa légère démonstration de géométrie, n'aident guère notre cavalier, encore moins son cheval : comment sait-il, partant de A, où aller faire boire son cheval ? (attention ce n'est pas une énigme, simplement une constatation désolée).
Partager cet article
Repost0
16 février 2009 1 16 /02 /février /2009 21:15
J'avais posé une (petite) énigme lors du précédent billet, quel est le chemin le plus court pour un cavalier pour aller de A vers B sachant qu'il doit emmener son cheval boire à la rivière en chemin (figure 1, en vignette) ? Réfléchissez-y avant de lire la suite.

Mes fidèles lecteurs se sont déchaînés, et ont donné la solution (projeter le symétrique de A ou de B, cf. figure ci-dessous), même plusieurs solutions, en commentaires du précédent billet. J'avais ma démonstration, elle est basée sur les deux mamelles du taupin, les coordonnées cartésiennes et le calcul différentiel. C'est lourd, inélégant (je préviens), mais à mon sens convaincant.
On prend pour origine du repère cartésien le point O (le milieu de AA'), par commodité.
La distance AB = AM + MB = [x² + a²]1/2 + [(L-x)² + b²]1/2 ; quand on dérive par rapport à x (choix du plus court chemin), on obtient l'annulation de la dérivée pour :

x  / [x² + a²]1/2= (L-x) / [(L-x)² + b²]1/2 ou plus simplement OM / AM = PM / BM, ce qui exprime que les triangles AOM et BPM sont semblables, donc l'égalité des angles AMO et PMB, avec deux conséquences :

1)
A'M (A' symétrique de A) est aligné à MB, donc la solution est bien celle où on construit le symétrique de A par rapport à la rivière (ou de B, ce qui est strictement équivalent)

2)
égalité des angles i (figure) faits avec la normale côté A et côté B : on retrouve la loi de la réflexion de Snell-Descartes - Ce n'est pas seulement le plus court chemin pour le cavalier, c'est le plus court chemin pour la lumière réfléchie... Encore de la physique qui se cache derrière une récréation mathématique !


Quand je vous disais (cf. le titre de mon premier billet) qu'il fallait un peu de réflexion....


Partager cet article
Repost0
13 février 2009 5 13 /02 /février /2009 07:37
Un peu de réflexion, un problème (qui sera à tiroirs) soumis à votre sagacité. Les problèmes de "chemin le plus court" sont toujours intéressants, pour nous sortir du cadre naturel qu'est la droite (certains parleront de "chemin le plus rapide", je préfère chemin le plus court - en temps) - voir un tel problème dans ce blog déjà.
Soit un cavalier situé en A, il veut se rendre en B, avec une contrainte, celle d'aller faire boire son cheval à la rivière (en bleu) en chemin. Saurez-vous proposer ce chemin le plus "court" ?

Rajoût  Ajout:  attention quelqu'un a trouvé la solution en commentaire - si vous voulez chercher ne regardez pas les commentaires !
Partager cet article
Repost0
12 novembre 2008 3 12 /11 /novembre /2008 08:23

Non, ce n’est pas un billet pour un régime minceur, mais un thème savoureux issu des « Problèmes plaisants et délectables qui se font par les nombres » (Bachet de Méziriac, 1612). D’ailleurs, sans que je le susse, un de mes précédents billets (le tour des 21 cartes) était dans ce recueil. Un cador, ce Bachet (1581-1638), injustement éclipsé par Bezout né cent ans après sa mort.

 

Etant donnée telle quantité que l’on voudra pesant un nombre de livres depuis 1 jusques à 40 inclusivement (sans toutefois admettre les fractions), on demande combien de poids pour le moins il faudrait employer à cet effet.

Ou : Trouver une série de poids avec lesquels on puisse faire toutes les pesées en nombre entier depuis 1 jusqu ‘à la somme des poids employés, cette somme étant la plus grande possible relativement au nombre de poids.


S’il n’y a que deux poids a et b, mettons a < b, on peut certes peser b + a, mais on doit aussi peser b + 1 qui lui est inférieur ou égal ; donc a = 1 : s’il n’y a que deux poids, l’un d’eux est forcément 1.


Le poids suivant est 3 : car avec 3 l’on pèse aussi 2 (3 d’un côté de la balance, 1 de l’autre coté) et 4. Tandis qu’avec 2 (et 1 qu’on a déjà) on ne peut peser 4, donc 3 est plus avantageux. D’autre part on ne peut sauter à 4 dès le deuxième poids, car avec 1 et 4 on aurait certes 3 (4 d’un côté de la balance, 1 de l’autre coté) mais il serait impossible d’avoir 2. Il en va de même pour tout poids supérieur à 4, qui ne permet pas de peser 2, même par différence. Donc le second poids est 3.

 

De proche en proche on peut ainsi démontrer que les quatre premiers poids sont 1, 3, 9, 27 : ce sont ces quatre poids qui permettent d’aller jusqu’à 40 (égal à 27 + 9 + 3 + 1) et de résoudre le problème posé par Bachet. Sachant qu’on peut peser par différence entre les plateaux, par exemple 19 se pèse avec 27 et 1 d’un côté, 9 de l’autre.

 

La solution générale est, on l’a compris, les poids de type 3n ; les n premiers permettent de peser jusqu’à S = 1 +…+ 3n ; le poids suivant dont on a besoin pour peser est 2S+1, on obtient alors tous les poids entre (S+1) et (2S+1) par différence de pesée sur les plateaux.

Or, S = ½ (3n+1 – 1) (multipliez par 3 : 3S = S +3n+1 – 1) : et donc le poids suivant (2S+1) c’est bien 3n+1; S étant la  dernière pesée possible avec les n premiers poids, on a besoin du poids suivant pour continuer ; ainsi la pesée suivant S, soit ½ (3n+1 +1) s’obtient en mettant 3n+1 d’un côté, tous les autres poids de l’autre [on pèse 3n+1 – S  = ½ (3n+1 +1) ]

Un délicieux problème dont je ne vous donne ici que la saveur, vous le lirez bien mieux décrit dans le livre du sieur Bachet que vous trouverez sur Internet (Edition Gauthier-Villars 1884, bibliothèque CNAM, page 154), mais dont j’aimerais bien avoir l’édition originale de 1612 entre les mains !


Sauf erreur de ma part – je n’ai toutefois rien vu sur cette comparaison – ce problème est analogue à celui du minimum de billets ou de pièces de monnaie : trouver un système monétaire qui minimise le nombre de pièces différentes – [à ceci prêt qu’on peut avoir plusieurs pièces de 1, 3, 9, etc dans son porte-monnaie]. Mais il est vrai que payer 19 euros à un commerçant en lui tendant une pièce de 27 et une pièce de 1 serait certes pédagogique mais guère commode !

 

Partager cet article
Repost0
6 septembre 2008 6 06 /09 /septembre /2008 08:06

On a du mal à se convaincre que 0,99999...... = 1 (en tout cas j'ai moi du mal à m'en convaincre) ; c'est ce qu'on appelle un développement décimal illimité impropre. Le nombre 1 possède deux développements décimaux illimités 1,0000000.... et 0,9999999...., le second bien qu'impropre donne bien 1 : tous les informaticiens vous le diront (puisque l'ordinateur ne manipule pas un nombre de chiffres infini après la virgule) ; les mathématiciens philosophes vous diront « mais oui, cela vaut bien 1, il s'agit de conceptualiser ce que représente une suite infinie de chiffres ! » ; les mathématiciens non philosophes, adeptes de travaux pratiques, poseront X = 0,99999...., ils feront 10X = 9,999999...= 9 + X donc X = 1.

Pourtant on n'a aucun mal à se représenter que 1/3 = 0,333333..... là, le développement décimal illimité est propre (c'est le seul qui convient), mais la chose n'est pas fondamentalement différente. C'est-à-dire qu'on se voit mieux, expérimentalement, en travaux pratiques, faire la division à la main, abaisser les 0 après les 1, écrire les 3, etc.

Si vous aimez les TP de maths, et ne jurez que par les opérations, partez du résultat que vous avez trouvé après votre division 1/3 = 0,33333.... . Multipliez cette équation par 3 (encore une autre opération, vous êtes d'accord de la faire ?) ; vous obtenez... quoi : 1 = 0,999999.... Je vous l'avais bien dit, non ?


A propos de ce terme « impropre », en mathématiques (ici le développement décimal impropre), m'est revenue une anecdote salace pour la rentrée. Le professeur de MathSup rend les copies, et en grand au stylo rouge en haut de la copie, je vois la note et le commentaire :

« Attention une intégrale peut être impropre par les deux bouts ! »

Ce prof n'était pourtant pas un rigolo. Pas inventé, je crois même que j'ai encore la copie.


Partager cet article
Repost0
3 février 2008 7 03 /02 /février /2008 14:52

Cycloide2.JPGOn connaît la forme de la cycloïde (figure) qui correspond à la courbe décrite par un point fixe sur un cercle qui roule sans glisser sur un plan. Pascal et Mersenne s’étonnaient que les Anciens n’aient pas découvert cette courbe : de fait, c’est au XVII° siècle qu’elle va être " découverte " et caractérisée. Nous l’étudierons prochainement du point de vue de la physique, car c’est une courbe qui possède des propriétés naturelles intéressantes. En attendant, pour vous mettre en haleine, une petite devinette physico-mathématique  : soit une boule de billard frappée à une vitesse V (donc lancée dans un mouvement de rotation sans glissement sur le tapis), peut-on exprimer en fonction de la vitesse V la longueur entre deux points de rebroussement de la cycloïde, c’est à dire la longueur AB ?

Partager cet article
Repost0
19 décembre 2007 3 19 /12 /décembre /2007 21:50

J’aime bien ces petits problèmes, qui comme celui du courant et du contre-courant, mélangent mathématiques et physique, obligent à réfléchir à la physique du sujet avant de la traduire dans la mathématique.

Voilà le problème des concombres : ils contiennent 99% d’eau. On fait reposer 500 kilos de concombres pendant la nuit. Le lendemain ils ne contiennent plus que 98% d’eau : quel est alors leur poids ?

Vous mettez la réponse en commentaire ?

[de Paul Halmos, mathématicien et vulgarisateur hongrois (1916-2006, voir Problèmes pour mathématiciens, petits et grands, Editions Cassini) ; cité par Tangente, novembre 2006].

halmos5.jpg

Partager cet article
Repost0
11 juin 2007 1 11 /06 /juin /2007 21:45

Une récréation mathématique simple, pour se reposer de ce billet un peu ardu sur Liouville et les nombres transcendants (merci quand même Liouville de ta découverte!). Elle est empruntée parmi une bonne dizaine donnée par le magazine Tangente en son numéro de juin.

Soit un rameur qui emprunte une rivière dans le sens d'un fort courant, il va d'un point à un autre en 2 heures. Il retourne vers son point de départ, contre le courant cette fois-ci, en 3 heures. Il met donc 5 heures pour faire l'aller-retour. A supposer qu'il n'y ait aucun courant et qu'il rame toujours à la même vitesse, combien mettrait-il de temps pour faire cet aller-retour?

J'aime bien ce problème (aisé), il oblige à bien réfléchir du point de vue des notions physiques, et à bien poser les équations algébriques.

Partager cet article
Repost0
2 juin 2007 6 02 /06 /juin /2007 21:20

On connaissait l’argument diagonal, permettant de démontrer par l’absurde que le segment [0,1] est non dénombrable (page 30 de mon livre), ou intervenant dans le théorème de Gödel. Voilà une autre diagonale qui va nous donner du fil à retordre.

On prend un carré de côté 1, on divise chaque côté en n segments égaux, ce qui divise le grand carré en n² petits carrés, et on fait croître n vers l’inifini.

La ligne brisée violette, allant du coin A au coin B, est toujours de longueur égale à 2 : en effet, les segments horizontaux sont superposables au segment AC, de longueur 1, et les segments verticaux sont superposables au segment BC, de longueur 1.

Quand n augmente, cette ligne brisée reste de longueur 2, tout en se rapprochant de la diagonale du grand carré qui, elle, est de longueur Racine(2). Si on veut se convaincre que la ligne brisée tend vers la diagonale, il suffit de calculer l’espace entre elles. Cet espace se compose de 2n triangles rectangles isocèles de côté 1/2n ; cette surface vaut donc 2n x 1/8n² = 1/4n elle tend vers 0 quand n tend vers l’infini.

On a donc le beau paradoxe suivant : la ligne brisée de longueur égale à 2 est, à la limite n tendant vers l’infini, la diagonale de longueur Racine(2) = 1,414 !

Je mets en commentaire un essai d’interprétation de ce paradoxe apparent…il y a de la fractale là-dessous, non ?

Partager cet article
Repost0

Articles RÉCents

Alterscience (janvier 2013)

Mon livre Alterscience. Postures, dogmes, idéologies (janvier 2013) détails.


CouvertureDéf


Récréations mathéphysiques

RécréationsMathéphysiques

Mon dernier ouvrage est sorti le 14 octobre 2010 : Récréations mathéphysiques (éditions Le Pommier) (détails sur ce blog)

Einstein, un siècle contre lui

J'ai aussi un thème de recherche, l'alterscience, faisant l'objet d'un cours que j'ai professé à l'EHESS en 2008-2009 et 2009-2010. Il était en partie fondé sur mon second livre, "Einstein, un siècle contre lui", Odile Jacob, octobre 2007, livre d'histoire des sciences (voir billet sur ce blog, et notamment ses savoureux commentaires).

Einstein, un siècle contre lui