28 juin 2007
4
28
/06
/juin
/2007
22:08

La masse inerte mi intervient dans le principe fondamental de la dynamique f=miγ ou dans la quantité de mouvement p= miv ; la masse pesante ou masse grave mg intervient dans la force de gravitation ou d’attraction de Newton f= G´ mg´ M/R², où M et R sont la masse et le rayon terrestres. Votre masse inerte est celle qui va vers l’avant quand le métro freine brusquement, votre masse pesante est celle de votre poids sur la balance.

Pour donner quelques formules, la composante radiale du poids est mgg, sa composante horizontale dûe à l’inertie centrifuge terrestre est mi Ω² R sinλ cosλ, λ étant la latitude et Ω la vitesse de rotation de la Terre . L’angle de déviation par rapport à la radiale terrestre est très faible, égal à Ω² R sinλ cosλ /g, soit 1,7 x 10-3 x sin(2 λ). Quand λ= 0 ou 90°, à l’équateur ou au pôle, il n’y a pas de déviation du fil à plomb. Notons que la discussion du fil à plomb est analogue à celle du pendule de Foucault, elle dépend de la latitude : la différence dans le cas du pendule de Foucault est qu’il est en mouvement.
Quelques ordres de grandeur :
G = 9,81 m x s-2
Accélération centrifuge (effet Eötvös) maximum égal à 1,7 x 10-3 m x s-2
Accélération de Coriolis 2 Ω v = 1,5 x 10-4 v, où v est la vitesse du mobile
NB : les deux accélérations, centrifuge et de Coriolis, sont des forces liées au repère terrestre, non galiléen. La force centrifuge est la composante " statique " de la force inertielle liée à la rotation terrestre, la force de Coriolis en est la composante " dynamique".
NB : les deux accélérations, centrifuge et de Coriolis, sont des forces liées au repère terrestre, non galiléen. La force centrifuge est la composante " statique " de la force inertielle liée à la rotation terrestre, la force de Coriolis en est la composante " dynamique".
Roland Eötvös va consacrer trente années de sa vie à l’étude de la force d’inertie terrestre pour un pendule qui n’est pas en mouvement ; certains appellent maintenant cette force " l’effet Eötvös ", comme " l’effet Coriolis " désigne l’autre force. Il utilise le " pendule de torsion "
Eötvös compare deux corps de même masse pesante mg (mg du corps 1 = mg du corps 2), et compare la force d’inertie sur ces deux corps, égal à mi Ω² R sinλ cosλ. Le dispositif utilisé est ingénieux : si cette force d’un côté est supérieure à l’autre (mi du corps 1 supérieure à mi du corps 2), on verra une torsion du fil mesurée par le déplacement d’un miroir. En fait Eötvös, prenant une masse de platine toujours identique d’un côté, et mettant d’autres corps de l’autre côté, n'observe pas de torsion, et mesure l’égalité de la masse inerte mi et de la masse pesante mg à 10-8 près.

Published by Alexandre Moatti
-
dans
D'autres quasi-indispensables physiques
commenter cet article …
commenter cet article …