Overblog Suivre ce blog
Editer l'article Administration Créer mon blog

Pourquoi ce blog ?

CouvPocheIndispensables
J'ai créé ce blog lors de la sortie de mon livre "Les Indispensables mathématiques et physiques pour tous", Odile Jacob, avril 2006 ; livre republié en poche en octobre 2011 (achat en ligne) (sommaire du livre).
Je développe dans ce blog des notions de mathématiques et de physique à destination du plus large public possible, en essayant de susciter questions et discussion: n'hésitez pas à laisser vos commentaires!

Rechercher

Indispensables astronomiques

Nouveauté octobre 2013, mon livre "Les Indispensables astronomiques et astrophysiques pour tous" est sorti en poche, 9,5€ (éditions Odile Jacob, éidtion originale 2009). Comme mon premier livre (Les Indispensables mathématiques et physiques), c'est un livre de notions de base illustrées avec des exemples concrets, s'appuyant sur les mathématiques (géométrie notamment) pour l'astronomie, et sur la physique pour l'astrophysique. Je recommande vivement sa lecture.

Communauté de blogs

3 avril 2009 5 03 /04 /avril /2009 21:39

Le texte BibNum d'Alain Juhel, professeur au lycée Faidherbe de Lille, sur Lambert et sa définition de la trigonométrie hyperbolique, m'a éclairé sur la signification géométrique du cosinus hyperbolique, dont j'avais appris les formules algébriques ½ (ex+ e-x) sans comprendre la signification géométrique.


Déjà pourquoi le terme trigonométrie hyperbolique ? parce que c'est la trigonométrie de l'hyperbole, comme la trigonométrie classique (cos, sin) est celle du cercle. L'une paramètre l'hyperbole, comme l'autre paramètre le cercle. Nous allons voir comment.


D'abord, pour ceux qui connaissent l'hyperbole sous la forme xy = 1 (avec pour asymptotes les axes des x et des y) , qu'ils ne soient pas dépaysés, il suffit de faire faire une rotation de -∏/4  suivie d'une homothétie de √2/2 (transformant le sommet 1,1 en le sommet 1,0), soit X = ½ (x+y) et Y = ½ (x-y), soit X² - Y² = xy = 1. La courbe X² -Y² = 1 est une hyperbole équivalente à xy = 1. On vérifie que les asymptotes de X² - Y² = 1 sont les droites Y = X et Y = - X.

La trigonométrie circulaire  (figure ci-dessus, à gauche) nous dit que, pour φ = angle ACN, N sur le cercle a pour coordonnées (cos φ, sin φ), X² + Y² = 1 , et  l'aire ACN est égale à la moitié de φ (calcul d'arcs : aire ACN = φ/2∏ × aire du cercle de rayon 1 = φ/2).


La trigonométrie hyperbolique (figure ci-dessus, à droite) va nous dire que, pour le même angle ACN, coupant l'hyperbole en M, M sur l'hyperbole a pour coordonnées non pas (ch φ, sh φ), mais (ch u, sh u), avec X² - Y² = 1 puisque ch²u - sh² u = 1 : c'est le paramétrage de l'hyperbole par la trigonométrie hyperbolique, u variant de 0 (sommet 1,0 de l'hyperbole) à ∞ (asymptote X = Y).


Mais ce qui est le plus intéressant, c'est que l'aire en rose ci-dessus, suivant la même sécante CNM, est, comme dans le cercle, donnée par le paramètre : elle vaut φ/2 pour le cercle (cf. ci-dessus), et u/2 pour l'hyperbole.



Pour ceux qui veulent approfondir et démontrer cela, je propose une solution différentielle. On commence par calculer de manière classique l'aire délimitée par la fonction rouge entre A et M, c'est-à-dire l'aire curviligne APM, où P est la projection de M sur l'axe des X (cf. figure de  Lambert ci-dessous). Ceci revient à intégrer YdX entre O et X, soit comme X = cht et Y = sht, intégrer shtdX soit sh²t dt entre 0 et u. Or sh² t = [1/2 (ex-e-x)]² = ½ (ch2t -1). La primitive de cette fonction est ¼ sh2t - ½ t, l'aire AMP recherchée vaut donc ¼ sh2u - ½ u. L'aire rose est donc égale à celle du triangle CPM moins celle qu'on vient de calculer ; elle vaut donc ½ shu chu - ¼ sh2u + ½u = ½u.

Enfin, Lambert nous donne, c'est lui qui le fait le premier, la relation, qui n'est pas simple, entre les deux paramètres φ et u de la même sécante CNM : elle est donnée par la pente de cette droite, sinφ/cosφ (pente en N) = shu/chu (pente en M), soit tgφ = thu. On mesure cette pente au points d'abscisse 1, soit A, on a donc tgφ = thu = AT.


Partager cet article

Repost 0

commentaires

DARMON Michel 18/07/2009 23:58

CaténaireLe cable porteur, supposé seul, est soumis à son poids, chaque arc de longueur ds étant soumis à un chargement p.ds. Il prend la forme bien connue de la chainette y= a.ch(x/a).Quand ce cable porte le fil conducteur supposé seul pesant, chaque arc est soumis à un chargement p.dx, si les suspenseurs sont régulièrement espacés. On peut montrer que le cable porteur prend alors la forme d'une parabole.La réalité est plus complexe entre chainette et parabole.Il y a de longues années, le Palais de la Découverte avait confondu les deux et j'avais eu du mal à les faire corriger.

Alexandre Moatti 19/07/2009 12:04


Oui, c'était dit par un autre commentaire plus haut, qui donnait la courbe plus précise ; c'est une image que je souhaite donner ici, pour faire comprendre la
place de la chaînette (ou avoisinante) dans la vie quotidienne. Merci de votre contribution. A.M.


Articles Récents

Alterscience (janvier 2013)

Mon livre Alterscience. Postures, dogmes, idéologies (janvier 2013) détails.


CouvertureDéf


Récréations mathéphysiques

RécréationsMathéphysiques

Mon dernier ouvrage est sorti le 14 octobre 2010 : Récréations mathéphysiques (éditions Le Pommier) (détails sur ce blog)

Einstein, un siècle contre lui

J'ai aussi un thème de recherche, l'alterscience, faisant l'objet d'un cours que j'ai professé à l'EHESS en 2008-2009 et 2009-2010. Il était en partie fondé sur mon second livre, "Einstein, un siècle contre lui", Odile Jacob, octobre 2007, livre d'histoire des sciences (voir billet sur ce blog, et notamment ses savoureux commentaires).

Einstein, un siècle contre lui