Le texte BibNum d'Alain Juhel, professeur au lycée Faidherbe de Lille, sur Lambert et sa définition de la trigonométrie hyperbolique, m'a éclairé sur la signification géométrique du cosinus hyperbolique, dont j'avais appris les formules algébriques ½ (ex+ e-x) sans comprendre la signification géométrique.
Déjà pourquoi le terme trigonométrie hyperbolique ? parce que c'est la trigonométrie de l'hyperbole, comme la trigonométrie classique (cos, sin) est celle du cercle. L'une paramètre l'hyperbole, comme l'autre paramètre le cercle. Nous allons voir comment.
La trigonométrie circulaire (figure ci-dessus, à gauche) nous dit que, pour φ = angle ACN, N sur le cercle a pour coordonnées (cos φ, sin φ), X² + Y² = 1 , et l'aire ACN est égale à la moitié de φ (calcul d'arcs : aire ACN = φ/2∏ × aire du cercle de rayon 1 = φ/2).
La trigonométrie hyperbolique (figure ci-dessus, à droite) va nous dire que, pour le même angle ACN, coupant l'hyperbole en M, M sur l'hyperbole a pour coordonnées non pas (ch φ, sh φ), mais (ch u, sh u), avec X² - Y² = 1 puisque ch²u - sh² u = 1 : c'est le paramétrage de l'hyperbole par la trigonométrie hyperbolique, u variant de 0 (sommet 1,0 de l'hyperbole) à ∞ (asymptote X = Y).
Mais ce qui est le plus intéressant, c'est que l'aire en rose ci-dessus, suivant la même sécante CNM, est, comme dans le cercle, donnée par le paramètre : elle vaut φ/2 pour le cercle (cf. ci-dessus), et u/2 pour l'hyperbole.
Enfin, Lambert nous donne, c'est lui qui le fait le premier, la relation, qui n'est pas simple, entre les deux paramètres φ et u de la même sécante CNM : elle est donnée par la pente de cette droite, sinφ/cosφ (pente en N) = shu/chu (pente en M), soit tgφ = thu. On mesure cette pente au points d'abscisse 1, soit A, on a donc tgφ = thu = AT.
commenter cet article …