Overblog Suivre ce blog
Editer l'article Administration Créer mon blog

Pourquoi ce blog ?

CouvPocheIndispensables
J'ai créé ce blog lors de la sortie de mon livre "Les Indispensables mathématiques et physiques pour tous", Odile Jacob, avril 2006 ; livre republié en poche en octobre 2011 (achat en ligne) (sommaire du livre).
Je développe dans ce blog des notions de mathématiques et de physique à destination du plus large public possible, en essayant de susciter questions et discussion: n'hésitez pas à laisser vos commentaires!

Rechercher

Indispensables astronomiques

Nouveauté octobre 2013, mon livre "Les Indispensables astronomiques et astrophysiques pour tous" est sorti en poche, 9,5€ (éditions Odile Jacob, éidtion originale 2009). Comme mon premier livre (Les Indispensables mathématiques et physiques), c'est un livre de notions de base illustrées avec des exemples concrets, s'appuyant sur les mathématiques (géométrie notamment) pour l'astronomie, et sur la physique pour l'astrophysique. Je recommande vivement sa lecture.

Communauté de blogs

2 juin 2007 6 02 /06 /juin /2007 21:20

On connaissait l’argument diagonal, permettant de démontrer par l’absurde que le segment [0,1] est non dénombrable (page 30 de mon livre), ou intervenant dans le théorème de Gödel. Voilà une autre diagonale qui va nous donner du fil à retordre.

On prend un carré de côté 1, on divise chaque côté en n segments égaux, ce qui divise le grand carré en n² petits carrés, et on fait croître n vers l’inifini.

La ligne brisée violette, allant du coin A au coin B, est toujours de longueur égale à 2 : en effet, les segments horizontaux sont superposables au segment AC, de longueur 1, et les segments verticaux sont superposables au segment BC, de longueur 1.

Quand n augmente, cette ligne brisée reste de longueur 2, tout en se rapprochant de la diagonale du grand carré qui, elle, est de longueur Racine(2). Si on veut se convaincre que la ligne brisée tend vers la diagonale, il suffit de calculer l’espace entre elles. Cet espace se compose de 2n triangles rectangles isocèles de côté 1/2n ; cette surface vaut donc 2n x 1/8n² = 1/4n elle tend vers 0 quand n tend vers l’infini.

On a donc le beau paradoxe suivant : la ligne brisée de longueur égale à 2 est, à la limite n tendant vers l’infini, la diagonale de longueur Racine(2) = 1,414 !

Je mets en commentaire un essai d’interprétation de ce paradoxe apparent…il y a de la fractale là-dessous, non ?

Partager cet article

Repost 0

commentaires

Nicolas 18/03/2011 21:41



Il semble qu'il y ait une erreur dans votre commentaire, car dans le cas du flocon de Von Koch, c'est un périmètre infini et une surface finie.



AlexM 02/06/2007 23:39

La surface comprise entre les deux courbes (la ligne brisée et la diagonale) est de périmètre 2 + Ö 2, et de surface 1/4n. on a donc un périmètre de longueur fixe délimitant une surface tendant vers 0.
Situation similaire au flocon fractal de von Koch: une courbe de périmètre fini délimitant une surface infini (fractale de dimension comprise entre 1 et 2)
La véritable similarité de la surface ci-dessus se fait avec la "poussière de Cantor" (fractale de dimension comprise entre 0 et 1): le facteur de similarité est P=2, le facteur d'homothétie est Q=4, la dimension fractale est Log2/Log4 = 1/2.

Articles Récents

Alterscience (janvier 2013)

Mon livre Alterscience. Postures, dogmes, idéologies (janvier 2013) détails.


CouvertureDéf


Récréations mathéphysiques

RécréationsMathéphysiques

Mon dernier ouvrage est sorti le 14 octobre 2010 : Récréations mathéphysiques (éditions Le Pommier) (détails sur ce blog)

Einstein, un siècle contre lui

J'ai aussi un thème de recherche, l'alterscience, faisant l'objet d'un cours que j'ai professé à l'EHESS en 2008-2009 et 2009-2010. Il était en partie fondé sur mon second livre, "Einstein, un siècle contre lui", Odile Jacob, octobre 2007, livre d'histoire des sciences (voir billet sur ce blog, et notamment ses savoureux commentaires).

Einstein, un siècle contre lui